Yapay Zeka İyi Adamlara da Yardımcı Olabilir - Dünyadan Güncel Teknoloji Haberleri

Yapay Zeka İyi Adamlara da Yardımcı Olabilir - Dünyadan Güncel Teknoloji Haberleri

Daha Az Manuel Doğrulama için Daha Az Yanlış Pozitif

Yanlış pozitifler güvenlik açısından kalıcı bir sorundur ve sıklıkla tarama sonuçlarını kontrol etmek için saatlerce süren manuel çalışma anlamına gelir

yazar hakkında

Frank Catucci, ölçeklenebilir uygulama güvenliğine özel mimari tasarlama, işlevler arası mühendislik ve ürün ekipleriyle ortaklık kurma konusunda 20 yılı aşkın deneyime sahip küresel bir uygulama güvenliği teknik lideridir ” Bunu takip eden on yıllarda, Yapay zeka araştırmaları devam etti Buzul hızı gibi görünen bir hızda, her zaman yakın gelecekte bir atılım vaat ediyordu – ta ki ChatGPT gibi dil araçları nihayet sahnede patlayana kadar

Teknoloji ilerledikçe iş ve operasyon liderleri, doğru AI/ML sonuçlarına dayalı olarak güvenle kararlar almak için ihtiyaç duydukları güvenilir verilere sahip olacak Yaklaşık 70 yıl önce Dartmouth Konferansı’ndaki araştırmacılar yalnızca spekülasyon yaparken, bugün siber güvenlik profesyonellerinin yapay zeka ve makine öğrenimini operasyonlarına ve stratejilerine dahil etmek için çok daha somut fırsatlar araması gerekiyor Araca bağlı olarak bunlar hangi olayların raporlanacağını, aracın hangi güvenlik açıklarını bulduğunu veya sorun önceliklerinin nasıl belirlendiğini etkileyebilir Frank ve karısı, iş ve bir şeyleri hacklemenin dışında bir aile çiftliği işletiyorlar



siber-1

Sektör yapay zeka ve makine öğrenimini (ML) daha fazla sürece dahil ettikçe, aşağıdakiler de dahil olmak üzere yapay zekayı iyilik için bir güç olarak kullanmak için giderek daha fazla fırsat görüyoruz

Yararlı olmasına rağmen, bu değerlendirmeler her zaman güvenliğin hızlı yazılım geliştirmeye ayak uydurması için gerekli olan daha derin bir bağlam veya rehberlik sağlamaz Yapay zeka tabanlı güvenlik araçlarına yönelik küresel pazarın şu seviyeye ulaşması bekleniyor: 2030’a kadar 133 milyar dolar günlük DevSecOps iş akışlarında daha fazla entegrasyon ve kullanım ile Farklı araçlar, güvenlik açıklarının teknik ciddiyeti, potansiyel istismar edilebilirliği, istismar edilmesi halinde iş üzerindeki etkileri ve genel güvenlik duruşunuz açısından önemi gibi farklı verileri hesaba katacaktır

Güvenlik Testlerinde Daha Keskin Bir Kenar Sağlamak

Büyük dil modelleri (LLM’ler) tarafından desteklenen ChatGPT ve benzeri araçlar geliştirildikçe ve popülerlik kazanmaya devam ettikçe, daha doğru içgörülere daha kolay erişmeyi bekleyebiliriz Yakın zamanda yapılan bir anket 1 Bu yapılandırma görevlerini otomatik hale getirdikten sonra geleceğin siber güvenlik ekipleri, sıkıcı manuel işlere çok daha az zaman harcayacak

Yapay Zeka Yenilecek Kötü Adam Değil, Kucaklanacak Kahramandır

Yapay zekada 1950’lerden bu yana yaşanan hızlı ilerlemeler, hiçbir yavaşlama belirtisi olmadan büyümenin zeminini hazırladı

Güvenlikte Yapay Zeka Üstünlüğü Yarışını Kazanmak

Tehdit tanımlamadan araç yapılandırmasına kadar yapay zekanın siber güvenlikteki somut etkilerini zaten görüyoruz

İyileştirilmiş Risk Puanlaması ve Tehdit İstihbaratı

Modern tarama araçları genellikle tarama tamamlandıktan sonra bir risk değerlendirmesi sağlar

Güvenlik testi söz konusu olduğunda, AI/ML araçlarını daha keskin hale getirecek şekilde eğitmek, statik uygulama güvenlik testi (SAST) ve dinamik uygulama güvenliği testi (DAST) araçlarının ince ayarının yapılmasına daha da yardımcı olacaktır

Güvenlik Araçları için Daha Hızlı ve Daha Doğru Yapılandırma

Günümüzde çoğu güvenlik teknolojisinin etkili olabilmesi için, çoğu zaman karmaşık parametre ayarlamaları yoluyla, çok sayıda manuel ince ayar yapılması gerekmektedir Siber güvenliği sürekli iyileştirmeye yönelik mevcut ve yeni ortaya çıkan araçların potansiyelini fark edebilirsek, yapay zeka gerçekten iyi adamlardan biri olabilir Ekipler, zaten mümkün olduğu kadar doğru olması gereken raporları doğrulamak için değerli zaman harcadıkça, güvenlik araçlarına ve süreçlerine olan güvenlerini kaybedebilirler Neyse ki, yakın zamanda IBM’in araştırması AI’nın yanlış pozitifleri %65 oranında azaltabildiğini ve kaynakları iş değeri katan faaliyetler için serbest bırakabildiğini gösterdi 500 BT uzmanından her biri, karar vericilerin neredeyse yarısının (%49) yeni araçların siber suçlulara yardımcı olacağından endişe duyduğunu, ancak tam %82’si önümüzdeki iki yıl içinde yapay zekayı güvenlik programlarına entegre etmeyi planladıklarını söyledi

Makine öğreniminin kurtarmaya geldiği yer burasıdır Açık havanın tutkulu bir hayranıdır ve her türlü balık tutmayı, tekneyle gezmeyi, su sporlarını, yürüyüş yapmayı, kamp yapmayı ve özellikle de arazi bisikletlerini ve motosikletleri sever

Bugün yapay zeka konusunda temelimizi bulduğumuzda, faydaların yanı sıra risklerle de karşı karşıya olduğumuz açıktır Bu durumda ML, işlemlerin mümkün olduğunca verimli bir şekilde yürütülmesini sağlamak için örneğin bir tarama kuyruğundaki öğelere öncelik vererek parametreleri sürekli olarak optimize edebilir Bu çıktılar, net ve eyleme geçirilebilir güvenlik açığı raporları sunmak için öğrenme sistemlerinin gücünden yararlanacak ve DevSecOps ekiplerinin en önemli şeye odaklanmasına olanak tanıyacak: yenilikçi uygulamalar oluşturmak ve sunmak Sonuçta bu, tarama sonuçları için kontrolün ve hassasiyetin artırılması, mevcut ve gelecekteki risklere ilişkin güvenilir istihbarat sağlanması ve güvenlik açığı avcılığının etkinliğinin artırılması anlamına gelir Frank, OWASP bölümünün eski başkanıdır ve OWASP hata ödülü girişimine katkıda bulunmuştur ve son olarak Data Robot’ta Uygulama ve Ürün Güvenliği Başkanı olarak görev yapmıştır Makine tarafından oluşturulan sonuçlar kapsam ve kalite açısından gelişmeye devam ettikçe, hangi sorunların eyleme geçirilebilir olduğunu ve riski en aza indirmek için hangi sırayla ele alınması gerektiğini göstererek daha doğru, veriye dayalı karar almayı destekleyecektir Tüm bu manuel ayarlamalar zaman alıcıdır ve doğru yapılandırmalar sağlanana kadar sizi tehditlere açık hale getirebilir Bu, tehdide maruz kalma durumunuzu daha iyi görebilmeniz için uygulamalarınız, web siteleriniz ve ağlarınız genelindeki çeşitli güvenlik koruma düzeylerini ve potansiyel riski gösterir Bu görevden önce Frank, Gartner’da Uygulama Güvenliği ve DevSecOps Kıdemli Direktörü ve Güvenlik Araştırmacısı olarak görev yaptı ve aynı zamanda Qualys için Uygulama Güvenliği Direktörü olarak görev yaptı


Dartmouth Konferansı’ndaki araştırmacılar, 1955’te yapay zeka (AI) üzerine bir yaz araştırma projesi teklifinde tahmin “…öğrenmenin her yönü veya zekanın herhangi bir özelliği prensipte o kadar kesin bir şekilde tanımlanabilir ki, bunu simüle edecek bir makine yapılabilir Mühendisleri ve geliştiricileri çalışmalarında yapay zeka ve makine öğrenimini güvenli bir şekilde kullanmaya teşvik eden bu makine odaklı çözümler, zaman içinde daha iyi ve daha yararlı bilgiler sağlamalı, hatta doğru güvenlik rehberliği de karışıma dahil edildiğinde bu daha da fazla sağlanmalı Önümüzdeki yıllarda güvenlik araçları, riski değerlendirmek ve tehditleri yönetmek için makine öğrenimini kapsamlı bir şekilde kullanacak